-->
Главная » Статьи » Стандарттау

Өлшеу және негізгі операциялар

Өлшеу және негізгі операциялар

 Физикалық объектілер шексіз алуан түрлілікпен айқындалатын қасиет-тердің көпшілігін иеленеді, олардың кейбіреулерін оларды өлшеу кезіндегі сандардың жиынтығымен анықтау қиын. Қасиеттердің барлық айқындалулары-ның арасында, эквиваленттік қатынастарында, аддитивтік тәртібінде айқында-латын, ортақ қасиеттер бар. Бұл қатынастар математикалық логика постулат-тарымен сипатталады. 
        Эквиваленттік қатынасы – бұл онда берілген X қасиеті әр түрлі А, В объектілерінде бірдей немесе бірдей емес болатын қатынас.
Эквиваленттік қатынасының постулаттары:
           a) дихотомия (ұқсастық немесе айырмашылық): не Х(А)=Х(В), не Х(А)≠Х(В);
          б) эквиваленттік қатынасының симметриялылығы: егер Х(А)=Х(В), онда Х(В)=Х(В);
          в) сапа бойынша транзитивтік (эквиваленттік қатынасын өту): егер Х(А)=Х(В) және Х(В)=Х(С), онда Х(А)=Х(С).
        Тәртіп қатынасы – бұл онда берілген Х қасиеті әр түрлі объектілерде артық немесе кем болатын қатынас. Тәртіп қатынасының постулаттары:
         а) антисимметриялық: егер Х(А)>Х(В), онда Х(В)<Х(А);
         б) қасиеттің қарқындылығы бойынша транзитивтік (тәртіп қатынасын өту): егер Х(А)>Х(В) және Х(В)>Х(С), онда Х(А)>Х(С).
        Аддитивтік қатынасы – бұл әр түрлі объектілердің біртекті қасиеттері қосындылана алатын қатынас. Аддитивтік қатынас постулаттары:
        а) бір сарындылық (бір бағыттылық, аддитивтік): егер Х(А)=Х(С) және Х(В)>0, онда Х(А)+Х(В)>Х(С);
       б) коммутативтік (қосылғыштардың орын ауыстырғыштығы): егер Х(А)+Х(В) = Х(В)+Х(А);
          в) дистрибутивтік (үлестірімділік): Х(А)+Х(В)=Х(А+В);
          г) ассоциативтік (терімділік): [Х(А)+Х(В)]+Х(С)=Х(А)+[Х(В)+Х(С)].
          Осыдан, эквиваленттік, тәртіп және аддитивтіктің аса ортақ қатынастары-ның айқындалуына байланысты, қасиеттер мен шамалардың үш түрін ажырату керек: - Хэкв – бұл қасиет өзін эквиваленттік қатынасында ғана айқындайды; - Хинт – бұл өздерін эквиваленттік пен тәртіп қатынасында айқындайтын, қарқынды шамалар; - Хэкст – бұл өздерін эквиваленттік, тәртіп және аддитивтік қатынасында айқындайтын, экстенсивті шамалар.

Өлшеудің негізгі кезеңдері

Өлшеу бірқатар кезеңдерден тұрады:
         - өлшеу міндетінің қойылымы: өлшеу шарттары және физикалық шама туралы деректерді жинау, объект модельдерін құру, өлшеу теңдеулерін құру, олардың көмегімен өлшенетін физикалық шаманың мәні табылатын, нақты шамаларды таңдау;
         - өлшеуді жоспарлау: өлшеу әдістерін және өлшеу құралының типтерін таңдау, өлшеу құралының метрологиялық сипаттамаларына қойылатын талаптарды анықтау, өлшеу құралын дайындау, өлшеу қателіктерін априорлы бағаны анықтау, өлшеу және бақылау шарттарын қамтамасыз ету;
         - өлшеу эксперименті: өлшеу құралдары мен объектісінің өзара әрекеттесуі, берілген мөлшерді өлшеу сигналын түрлендіру және ұдайы өсіру, сигналдарды салыстыру және нәтижелерді тіркеу;
          - эксперименттік деректерді өңдеу: алдыңғы ақпаратты талдау, қателікке мүмкін болатын түзетулерді анықтау, математикалық есепті талдау, деректерді өңдеу, есептеу процестері, алынған нәтижелерді талдау және оларды анықталған түрде белгілеу.

Өлшеу теориясының постулаттары

  Өлшеу теориясы олардың алғашқы аксиомаларын сипаттайтын, постулаттар негізінде құрылады. Бүгінгі күні олар аяқталмаған, нақтыланып және толықтырылып отырады.
         Бірінші
α постулаты: зерттеу объектісінің қабылданған моделінің шеңберінде белгілі өлшенетін физикалық шама және оның шынайы мәні бар. Модель объектіге барабар болып танылғанша, өлшенетін шама мәнінің маңызы болады. Зерттеудің әр түрлі мақсаттары кезінде берілген объектімен әр түрлі модельдер салыстырылуы мүмкін, онда α постулатынан α1 салдары шығады: өлшеу объектісінің берілген физикалық шамасы үшін өлшенетін шамалар жиыны бар болады. Осыдан, объектінің өлшенетін қасиетіне оның моделінің қандай да бір параметрі сәйкес келу керек. Бұл параметр өзгермейтін болып саналу керек, әйтпесе өлшеу тексерілген бола алмайды. Көрсетілген факт екінші β постулатымен сипатталады: өлшенетін шаманың шынайы мәні тұрақты.
           Айнымалы физикалық шаманы өлшеу үшін тұрақты параметрді таңдау немесе ерекшелеу және оны өлшеу керек. Жалпы жағдайда мұндай параметр қандай да бір функционалдың көмегімен енгізіледі. Мұндай тұрақты параметр-лердің мысалы орташа түзетілген немесе орташа квадраттық мәндер болып табылады. Берілген аспект
β1 салдарында көрсетіледі: айнымалы физикалық шаманы өлшеу үшін оның тұрақты параметрін, яғни өлшенетін шаманы анықтау қажет. Өлшеу объектісінің математикалық моделі қасиеттердің толық сипаттамасын бермейді. Ол берілген есепті шешу үшін мәні бар, олардың кейбіреулерін белгілі жуықтау дәрежесімен сипаттайды.
           Өлшенетін шама қабылданған модельдің параметрі ретінде анықталады, ал оның мәні өлшенетін шаманың шынайы мәні ретінде қабылданады, яғни объектінің қасиеттерін идеалдандыру болады, ол модель параметрі мен объекті-нің нақты қасиеті арасындағы сәйкессіздікті себептейді, бұл сәйкессіздік табалдырықты деп аталады. Табалдырықты сәйкессіздік ұғымының сипаты үшінші
γ постулатымен анықталады: өлшенетін шаманың объектінің зерттеле-тін қасиетіне сәйкессіздігі бар болады. Сәйкессіздік өлшеудің қол жеткізетін дәлдігін шектейді. Өлшеулерді және өлшеу мақсатын нақтылауды объектінің моделін нақтылау үшін жүргізеді. Модельдің енгізілген параметрі табалдырық-ты сәйкессіздікпен анықталатын қателіктерге тең қателікпен өлшенуі мүмкін, яғни объектінің абсолюттік барабар моделін салу мүмкін емес және табалдырықты сәйкессіздікті жоюға болмайды. Осыдан γ1 салдары пайда болады: өлшенетін шаманың шынайы мәнін іздеп табу мүмкін емес.
Модельді априорлы ақпарат бар болған кезде салуға болады. Сонымен бірге ол неғұрлым артық болса, модель неғұрлым аса барабар болса, оның параметрі соғұрлым дәлірек болады, яғни априорлы ақпараттың ұлғаюы табалдырықты сәйкессіздікті өзгертеді. Бұл жағдай
γ2 салдарында өрнектелген: өлшеудің қол жеткізілетін дәлдігі өлшеу объектісі туралы априорлы ақпаратпен анықталады.
           Келтірілген постулаттар және олардың салдары өлшеудің теориялық іргетасын салу ұмтылыстарының бірі болып табылады, және де оларды соңғы инстанциядағы ақиқат деп санаудың керегі жоқ.


Категория: Стандарттау | Добавил: admin (28.10.2013)
Просмотров: 1718 | Теги: Өлшеу және негізгі операциялар | Рейтинг: 0.0/0
Всего комментариев: 0

Имя *:
Email:
Код *: